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Nitric oxide ('NO) and nitrogen dioxide (°NO2) are 
hydrophobic gases. Therefore, lipid membranes and 
hydrophobic regions of proteins are potential sinks 
for these species. In these hydrophobic environments, 
reactive nitrogen species will exhibit different chem- 
istry than in aqueous environments due to higher local 
concentrations and the lack of hydrolysis reactions. The 
peroxynitrite anion (ONOO-) and peroxynitrous acid 
(ONOOH) can freely pass through lipid membranes, 
making peroxynitrite-mediated reactions in a hydro- 
phobic environment also of extreme relevance. The 
reactions observed by these reactive nitrogen species 
in a hydrophobic milieu include oxidation, nitration 
and even potent chain-breaking antioxidant reactions. 
The physiological and toxicological relevance of these 
reactions is discussed. 

Keywords: Nitric oxide, nitrogen dioxide, peroxynitrite, 
nitration, oxidation, membrane 

INTRODUCTION 

Nitric oxide ('NO) has many diverse biological 
activities, ranging from neuronal transmission 
to the regulation of vascular tone. Ill Similar to 

oxygen, "NO is chemically inert with respect to 
most biological molecules and easily partitions 
into lipid environments. The relatively long 
half-life of "NO, approximately 1 s in biological 
systems, [21 allows "NO to diffuse across several 
cell diameters. E3J These properties enable "NO to 
act as a messenger molecule. An example of this 
is shown by the regulation of vascular tone; "NO is 
generated by the vascular endothehum by a 
constitutive form of nitric oxide synthase (NOS), 
after which "NO diffuses out of the cell and into 
the smooth musculature where it binds to guany- 
lyl cyclase and initiates vascular relaxation. 

Binding of "NO to guanylyl cyclase illustrates 
one of the major biological targets of "NO, heme 
proteins. "NO is also reactive to other free radicals, 
such as the superoxide anion (O~) and the tyrosyl 
radical. Although "NO is soluble in aqueous 
solutions, it has higher solubility in hydrophobic 
solvents. I43 This suggests that the concentration 
of "NO may be higher in a ]ipid milieu and there- 
fore highly relevant to reactions with lipid (L') 
and lipid peroxyl (LOO') radicals. I51 
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The steady state concentration range of "NO 
generated in vivo is about 10-100 nM. [6"71 °NO may 
increase to concentrations of 450 nM at the sur- 
face of endothelial cells following bradykinin 
stimulation I6I and up to 41xM during cerebral 
artery occlusion. IsI Although much is known 
about the chemistry of °NO in aqueous solution, 
detailed investigations of the chemistry of "NO 
and other oxides of nitrogen in the hydrophobic 
interior of membranes or hydrophobic regions 
of proteins have only recently begun. 

"NO A N D  MEMBRANES 

The low-density lipoprotein (LDL) particle is a 
useful model for the investigation of both reac- 
tive oxygen and reactive nitrogen chemistry in a 
hydrophobic environment. The LDL particle 
consists of a single protein, apolipoprotein B-100 
(Apo-B), which has a circumferential distribution 

around the particle. Ig-q4J The outer shell of the 
particle is composed of a monolayer of phos- 
pholipids and free cholesterol which surrounds 
a cholesterol-ester rich hydrophobic core tlSJ 
(Figure 1). 

The generation of "NO by the endothelium 
has generated much interest in the role of "NO 
in LDL oxidation. "NO has been reported to have 
both antioxidant and pro-oxidant roles during 
its interaction with LDL. t5'16-211 Many of these 
contradictory investigations are the result of 
differences in choice of an appropriate "NO 
source. Although authentic "NO solutions are 
often used, care must be taken to reduce the 
contamination of these solutions with oxygen 
or higher oxides of "NO, such as °NO2 or N203, 
which will exhibit entirely different chemistry. 
Other sources of "NO include a wide variety of 
compounds that decay to release °NO. The release 
of "NO from many of these donor compounds 
is usually dependent on light or catalysis by 

E 

~NE , 

F 

Phospholipids 

Cholesterol 

Apo B 

Triglycerides 

Cholesterol ester 

Vlolecular weight = 2-3xl 
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FIGURE 1 LDL structure. 
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O 
H 2 ~ N T V - - - N N _ _ N , , N ~ /  

H2~"N / "OH 

SNN 

H2 N..-'N,,.,,,"N N ~ N  H 
H2W/"-~ / 

spermine 
FIGURE 2 The thermolytic decomposition of SNN to "NO and spermirte. 

+ 2 "NO 

enzymes or metal ions, I221 making it difficult to 
determine the kinetics of "NO release. 1-Substi- 
tuted diazen-l-ium-l,2-diolates, a group of "NO 
donor compounds commonly referred to as 
NONOates (Figure 2), therrnolytically release 
two molecules of "NO from each molecule of 
donor compound. Since "NO release is indepen-  
dent of cofactors, these donor compounds have 
easily defined rates of decay, making them ideal 
tools for elucidating "NO mechanisms by kinetic 
modeling. In addition, both the decayed com- 
pound and secondary amine backbone are 
easily obtainable for use as controls. Rates of 
"NO release are affected by reaction conditions 
(e.g., pH, temperature, buffer), so it is important to 
verify and characterize "NO release in the experi- 
mental system under stud~ rather than rely on 
published half-lives. Verification of "NO release 
can be accomplished using an "NO electrode, a 
chemiluminescence detector or electron spin 
resonance with nitronyl nitroxide, a "NO scaven- 
ger/ 23] The decay of the NONOate compound can 
be determined with a UV spectrometer at 250 nm. 

It is believed that oxidation of the lipid com- 
ponent of LDL leads to the pro-atherogenic 
modification of the LDL partide. ]241 Lipid peroxi- 
dation consists of three phases; initiation, propa- 
gation, and termination.I25I Initiation occurs upon 
the abstraction of a bis-allylic hydrogen from an 
unsaturated fatty acid which yields a lipid radical. 
Once initiation has occurred, peroxidation is 

propagated through a chain reaction mediated 
by lipid peroxyl radicals. Termination reactions 
remove these radicals by either radical-radical 
interactions or by reactions with chain-breaking 
antioxidants. Such antioxidants remove lipid 
peroxyl radicals through donation of a hydrogen 
atom to the radical, thus generating lipid hydro- 
peroxide (LOOH). The resulting antioxidant 
radical is not sufficiently reactive to abstract a 
hydrogen atom and is therefore unable to parti- 
cipate in the propagation of oxidation. LDL is 
afforded some protection against oxidation in the 
form of a small contingent of endogenous anti- 
oxidants (consisting predominantly of vitamin E). 
However, once these antioxidants have been 
consumed, oxidation of the LDL particle results 
in a dramatic increase in the particle's LOOH 
content. Since antioxidants are the primary de- 
fense of the particle, monitoring endogenous 
antioxidant concentrations is a sensitive assay of 
LDL oxidation. 

There is contradiction in the literature concern- 
ing whether "NO exhibits pro-oxidant [26--28] or 
antioxidant activity [29] with respect to the LDL 
particle. However when carefully handled, "NO 
does not affect the endogenous antioxidants 
c~-tocopherol (a-TH), "T-tocopherol (v-TH) or fl- 
carotene, even when bolus addition of "NO 
solution is used. [3°'31] Artifactual oxidation of 
oc-TH in many studies most likely resulted from 
oxygen contamination or a failure to remove 
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600 S.EA. GOSS et al. 

contaminating nitrogen oxides from commercial 
"NO gas. Addition of "NO gas also exhibits an 
antioxidant activity towards lipid oxidation if 
bolus additions of low (sub-micromolar concen- 
trations) are repeatedly made during the oxida- 
tion time-course [32] or by slow continuous 
infusion. [331 

(A) Transition Metal Ion-mediated 
LDL Oxidation 

Copper-mediated LDL oxidation is dependent  on 
the presence of pre-existing lipid hydroperoxides. 
When copper breaks down these lipid hydroper- 
oxides, initiation occurs. Antioxidants such as a- 
TH donate a hydrogen atom to the lipid peroxyl 
radical to form a lipid hydroperoxide and break 
the propagatory chain reaction. Therefore, in the 
presence of a-TH, the kinetic chain length of the 
lipid peroxidation cycle is one. Figure 3 is a 
scheme of copper-mediated lipid peroxidation: 

/ 

LOONO A" + LOOH 

/ 
I ,ON~ 

FIGURE 3 Copper-mediated lipid peroxidation in the pre- 
sence of "NO. Bold symbols denote steps in which "NO 
scavenges lipid-derived radicals to inhibit oxidation. 

As shown in Figure 3, each step of peroxidation 
will generate lipid hydroperoxides, making cop- 
per-mediated lipid peroxidation a complex auto- 
catalytic reaction. 

"NO is an extremely potent inhibitor of copper- 
mediated LDL oxidation as measured by TBARS 
formation, conjugated diene formation, changes 
in etectrophoretic mobility, and a-TH deple- 
tion. [3°'341 The kinetics of "NO inhibition of 
copper-dependent LDL oxidation suggest that 
"NO acts as a peroxyl radical scavenger, as pre- 
viously reported. ISJ 

In contrast to phenolic antioxidants, the con- 
centration dependence of the antioxidant effect of 
nitric oxide donor compounds is non-linear. [3°1 A 
possible mechanism for this is that "NO inhibits 
the propagation of lipid peroxidation by sca- 
venging peroxyl radicals to form a lipid-nitroso 
adduct as shown in Figure 3. As a consequence, 
LOOH is not formed, resulting in a kinetic chain 
length of lipid peroxidation of zero in the pres- 
ence of "NO. Since LOOH is not formed, further 
copper-dependent initiation is prevented. There- 
fore, when all of the endogenous LOOH has been 
converted to LOONO or OLOONO, the LDL will 
no longer be susceptible to copper-dependent 
oxidation. This will result in a non-linear concen- 
tration-dependent inhibition of oxidation by 
"NO. Support for this mechanism comes from 
the observation that when 13[S-(E,Z)]-hydro- 
peroxy-9,11-octadecadienoic acid (HpODE, a 
lipid hydroperoxide) is added, a higher concen- 
tration of "NO donor compound is required to 
reach this non-linear region of the concentration- 
dependent inhibition than is needed in the 
absence of HpODE. I3°1 

Even in the presence of "NO donor compounds, 
LDL does eventually oxidize in the presence of 
copper. This may be due to the breakdown of 
LOONO to LOOH by hydrolysis or some other 
mechanism. If this occurs after the "NO donor 
compound has decayed, oxidation will occur. 
Recently it was demonstrated that two molecules 
of "NO are consumed for each chain reaction that 
is terminated. [321 This suggests that the products 
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OXIDES OF NITROGEN AND PEROXYNrrRITE 601 

formed from the breakdown of LOONO may also 
be scavenged in the presence of "NO. The stability 
of lipid-nitroso adducts in biological systems has 
not been hilly determined. I331 

(B) Peroxyl Radical-Mediated LDL 
Oxidation 

Azo compounds can initiate free radical chain 
reactions, including lipid peroxidation, by a metal 
ion-independent mechanism.~351 These molecules 
have the generic structure R-N=N-R and ther- 
molytically decompose, by a double homolytic 
cleavage of the R-N bonds, to give nitrogen and 
the radical R °. This radical can either dimerize, 
forming R-R, or react with oxygen to give the 
peroxyl radical ROO °. It is this peroxyl radical 
that is thought to be the initiating molecule. Two 
azo initiators, 2,2 %zobis-2-amidinopropane HC1 
(ABAP), which is water-soluble, and 2,2'-azo- 
bis(2,4-dimethylvaleronitrile) (AMVN), which is 
lipid-soluble, have been extensively used to 
investigate lipid peroxidation. The advantage of 
using ABAP rather than copper to study the 
kinetics of LDL oxidation lies in the fact that 
ABAP decays very slowly. Consequently, if a high 
concentration of ABAP is used, radical produc- 
tion is effectively linear (because ABAP concen- 
tration decreases negligibly during the course of 
the experiment). 

°NO is an extremely potent inhibitor of ABAP- 
mediated LDL oxidation as measured by TBARS 
formation, changes in electrophoretic mobility, 
and c~-TH depletion. As with copper, a possible 
mechanism for the inhibitory effect of °NO upon 
lipid peroxidation is by scavenging peroxyl 
radicals to form a lipid-nitroso adduct. I351 Inhibi- 
tion may also occur via a direct reaction between 
°NO and the initiating radical generated from 
the thermal breakdown of ABAP. I361 The effect of 
"NO, again, will differ from that of classical 
phenolic antioxidants such as c~-TH in that °NO 
will act as an antioxidant by inhibiting lipid 
peroxidation with a kinetic chain length of zero. 
A scheme showing the various points at which 

"NO may have an effect on ABAP-mediated lipid 
peroxidation is shown in Figure 4. 

"NO reacts with organic peroxyl radicals with a 
rate constant of 1-3 x 109 M -1 8-1. [37] The reaction 
between peroxyl radicals and c~-TH has a rate 
constant of 5 x 105M-Is-1. I381 Therefore, "NO 
could be as effective an inhibitor of lipid peroxi- 
dation as c~-TH at a much lower concentration 
(in the order of 10 4 times lower). Furthermore, 
"NO is a hydrophobic molecule and partitions 
favorably into LDL-lipid. "NO may then be 
available to react with all peroxyl radicals regard- 
less of their orientation in respect to the antioxi- 
dant functional group or their location within 
the LDL particle. The generation of "NO at a slow 
and controlled rate may result in a steady state 
concentration of "NO sufficiently high to react 
with lipid peroxyl radicals as they are formed 

ABAP 

02 R" + R" K~"32 
ROONO " ~  RI~NO 

RONO~ RIooH~ ~R[OO [H RONO2 

LOONO A'+ IX)OH 

/ 
LONO2 

FIGURE 4 ABAP-mediated lipid peroxidation in the pre- 
sence of "NO. Bold symbols denote steps in which "NO 
scavenges peroxyl radicals. 
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602 S.P.A. GOSS et al. 

and thus inhibit both the initiation and propaga- 
tion reactions of the lipid peroxidation chain 
reaction. 

(C) Cell-mediated LDL Oxidation 

The actual mechanism underlying biological 
oxidation o f  LDL is yet to be determined, 
however, many mechanisms have been sug- 
gested.t391In vitro oxidative modification of LDL 
occurs when LDL is incubated in the presence of 
monocytes, macrophages, smooth muscle cells, 

[24 40-45] endothelial cells, and neutrophils. ' Macro- 
phages stimulated with lipopolysaccharide and 
interferon-7 were shown to have a reduced abil- 
ity to oxidize LDL. {19"21'46] This observation was 
attributed to the induction of iNOS and the 
formation of "NO because the NOS inhibitors 
MDL 100,248 and NC-monomethyl-L-arginine 
were shown to reverse this effect. The addition 
of various °NO donors to unstimulated macro- 
phages also prevented these cells from oxidiz- 
ing LDL. This inhibition was observed with three 
different "NO donors that exhibited different 
mechanisms of "NO release. [471 

These studies clearly show that cell-dependent 
oxidation of LDL, which depends on the propaga- 
tion of lipid peroxidation, is inhibited by the 
presence of "NO donors. As shown during both 
transition metal ion-mediated and peroxyl radi- 
cal-mediated LDL oxidation, °NO may act as a 
peroxyI radical scavenger in this system. 

form reactive intermediates is thus too slow to 
be of any physiologicaI significance.IS°l However, 
both "NO and oxygen are considerably more 
lipophilic and, consequently, the autoxidation of 
"NO should be greatly accelerated in the hydro- 
phobic milieu, t41 The oxidative reaction of "NO is 
mediated by °NO2 or N203. These molecules are 
also hydrophobic. In the lipid phase, the hydro- 
lysis of "NO2 to nitrite and nitrate is minimal. As 
°NO2 is a potent nitrating agent, it follows that 
membranes may represent an important site of 
biological nitration. 

°NO2 is also formed from autoxidation of "NO 
or from one-electron oxidation of the nitrite anion 
by peroxidases. I51's21 Several peroxidizing sys- 
tems, including myeloperoxidase/H202 and cop- 
per, zinc superoxide dismutase/H202 have been 
shown to oxidize NO 2 to °NO2. °NO2 will react 
with phenolic compounds to yield diagnostic 
products (see Scheme 1). "NO2, a potent lipid- 
soluble oxidant, can abstract a hydrogen atom 
(k~105M-ls  -1 at pH 7.0) from the phenolic 
hydroxyl group of c~-tocopherol (cz-TH) and 
7-tocopherol (7-TH) to form the corresponding 
cz-tocopheroxyl (c~-T') and 7-tocopheroxyl (7-T') 
radicals. Is31 The reaction between c~-T" and "NO2 
is very rapid, forming a radical-radical recom- 
bInation intermediate that rearranges to form the 
c~-tocopheryl quinone (c~-TQ). The reaction be- 
tween 7-T" and "NO2 leads to a nitrated product, 
5-nitro-7-tocopherol (NGT). NCT and o~-TQ can 
be separated and identified by HPLC. t541 

"NO2 AND MEMBRANES 

"NO is not chemically inert in the presence of 
oxygen. The rate of the reaction between "NO and 
oxygen is proportional to the second power of the 
°NO concentration. I48"491 Consequently, this reac- 
tion will be greatly favored at the high, non- 
biological concentrations of "NO generated by 
bubbling °NO gas through solutions, t16"2°j In 
aqueous solution, the autoxidation of °NO to 

"NO2 + c~-TH ~ o~ - T ° + HNO2 

°NO2 + c~-T" --+ --+ cz-TQ 

°NO2 + 7-TH --+ 7-T ° + H N O 2  

°NO2 + 7-T ° ~ NGT 

°NO2 + NGT --0 ° NGT + HNO2 

°NGT --+--+ products 

SCHEME 1 
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OXIDES OF NITROGEN AND PEROXYNITRITE 603 

O N O O -  A N D  M E M B R A N E S  

As indicated earlier, "NO reacts with O~ at a 
nearly diffusion-controlled rate to form peroxy- 
nitrite. [551 This reaction appears to be ubiqui- 
tous in cellular systems. I56] Both peroxynitrite 
anion (ONOO-) and its conjugate acid peroxyni- 
trous acid (ONOOH) can cross lipid membranes 
at a rate comparable to that of water./57~ This 
rapid transmembrane diffusion of ONOO-/  
ONOOH necessitates a better unders tanding 
of their oxidative and nitrosative reactions in 
membranes. 

As with *NO and °NO2, the hydrophobic 
interior of biological membranes also influences 
nitration reactions of transmembrane targets by 
peroxynitrite (Figure 5). Recently, it has been 
reported that although the reaction between free 
tyrosine and peroxynitrite (added in bolus 

amounts) forms nitrotyrosine, neither SIN-1 
(which decomposes to generate "NO and O~ at 
equal rates) nor the simultaneous addition of 
"NO and O~ results in tyrosine nitration, tSsI 

This paradox does not appear to exist with the 
nitration of "~-TH in membranes. Peroxynitrite 
preferentially nitrates membrane-bound -~-TH as 
compared to tyrosine in the aqueous phase and 
the addition of SIN-1 to liposomes containing 
7-TH results in the formation of NGT. Is9] This 
aspect is intriguing and raises interesting ques- 
tions with respect to the mechanisms of phenolic 
nitration in the hydrophobic phase. Peroxyni- 
trite-dependent nitration of tyrosine in the aque- 
ous phase is likely to be very different from 
nitration of tyrosine residues in the membrane. In 
addition, the presence of either ct-TH or 7-TH 
has an inhibitory effect on peroxynitrite- 
mediated tyrosine nitration. 

A q u e o u s  Phase  Lip id  Phase  A q u e o u s  Phase  
• N,,x '~-',r.,-"V,Jv! "z'v',,~/V', Ill 

V'. "\,-,,A-'v',/Vv -"•",J ~, ,' J~,x/v 

NO ......... - 0 ~ - ~  ~5" .>  ,- ,. .. ~ nxTnnu -~ [ 'OH .... N0,1 

• . 0 - . -  , .,O,,, 
Nltra t ionand  - -  2 ~ ~ ~ . . , , , ~ ~ ~ . , ~  

Oxidat ion / ~ ' Y / ~ ~ ¢ ~  " _ _ ~  ~ _ 
React ions  N ~ ~ } " ~ ! ~  ONO0 + H' NO 3 

lh r''',~- "~ ~ -,"-" " J\/'¢"~ "¢" ¢'~ I ~  'ii 
• N n . . . 3 1 t w . ~ . ~ v - ' z " ~ t ' , , ' v ~ ' . , m  w I ~ ~ - -  / 

Perox,dase//I I \ "--.  
,T ,--. / I l ~'~'~,'¢~-'-',/~'" "'~ ,-vN,'.~ I \ .,,--.~,r'~ ~,-~,,'~- 

I I • Iv'~w',..,'~., V', :~"~.-~'-" "-'\,". ,,~F _L \ • 

A/.,, ..,.,,.. ,.-v,,.. n N  I 
i~u2 ~ I  " - • • 

Reactmns Nitration ~~W,~ Reactions 

FIGURE 5 Nitration reactions in membranes. In the aqueous phase, reactive nitrogen species undergo hydrolysis and 
hydroxylation reactions. For example, NO~ hydrolyses to form NO 2 and NO~ and peroxynitrite catalyzes hydroxylation 
reactions in the aqueous phase. In the lipid phase, the reaction mechanism appears to be dominated by nitration reactions. 
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604 S.EA. GOSS et al. 

C O N C L U D I N G  REMARKS 

The reaction between "NO and l ipid-der ived 
radicals has major biological and biomedical  
ramifications. I6°I As the rate constant be tween 

"NO and peroxyl  radicals is nearly diffusion-con- 
trolled, this represents a potent  chain-terminating 
reaction for lipid peroxidation. This property,  
coupled  With the high solubility of "NO in 
hydrophobic  membranes,  makes "NO a unique  

gaseous antioxidant.  
Al though it is difficult to accurately measure  

the rate of biologically-mediated LDL oxidation 
in in vivo, it is likely to be fairly slow, if compari-  
sons to cellular-mediated LDL oxidation can be 
made.  The s teady state concentrat ion of "NO 
generated by  the endothel ium, and the likelihood 
of the presence of "NO in the sub-endothel ial  
layer, suggest  that the oxidative modif icat ion of 
LDL located in that area will be inhibited. 

The slow generation of "NO by the vascular 
endo the l ium may  represent  a cont inuous source 
of antioxidant,  playing an integral role in sup- 
pressing oxidative reactions within the vas- 
culature. Impai rment  of "NO generat ion or 
acceleration of the rate of oxidation m a y  be a 
critical componen t  in both the early stages and the 
deve lopmen t  of atherosclerosis. 

Research focusing on the rapid t ransmembrane  
diffusion of O N O O - / O N O O H  may  offer a better 
unders tand ing  of their oxidative and nitrosative 
reactions in membranes.  Very little data  concern- 
ing RNS-mediated nitration reactions in mem-  
branes exist in the literature. I4l Increased levels of 

ni t rotyrosine and nitrated proteins have been 
detected in a variety of pu lmona ry  and cardio- 
vascular  diseases, and neurodegenera t ive  and 
chronic inf lammatory disorders. [61'621 Clearly, a 

detailed unders tanding  of the oxidative and 
nitrosative reactions of reactive ni trogen species 
in well-defined model  membranes  will p rovide  
new insight in to the development  of therapeutic  
strategies to minimize oxidative and  nitrosative 
processes in diseases. 
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